Further Mechanics MS

1. C

[1]

2. (a) Conversion from per minute to per second

Conversion from revolutions to radians

1

1

1

1

Example of calculation

20 revolutions = $20 \times 2\pi$ /60 (= 2.1 rads s⁻¹)

(b) Use of $r\omega^2$

Answer in range 6 – 13

 ms^{-2}

[5]

3. QWC i and iii – Spelling of technical terms must be correct and the answer must be organised in a logical sequence

Momentum conservation (1)

Total/initial momentum = 0 (1)

Momentum of slime equal momentum of bacteria (1)

(Bacteria) moves in opposite direction [backwards or forwards OK] (1)

OR

Force on slime (1)

Equal and opposite force (on bacteria) (1)

Cause rate of change of momentum / $\Delta mv/t$ /ma to bacteria (1)

(Bacteria) moves in opposite direction [backwards or forwards OK] (1) Max 4

[4]

4. (a) (i) Calculation of time period (1)

Use of
$$v = \frac{\Delta s}{\Delta t}$$
 or $\omega = \frac{2\pi}{T}$ (1)

Use of
$$a = \frac{v^2}{r}$$
 or $a = r\omega^2$ (1)

Correct answer (1)

Example of calculation:

$$T = \frac{25 \times 60 \times 60s}{15} = 5760s$$

$$v = \frac{2\pi r}{T} = \frac{2\pi \times 6.94 \times 10^6 m}{5760s} = 7.57 \times 10^3 ms^{-1}$$

$$a = \frac{v^2}{r} = \frac{(7.6 \times 10^3 ms^{-1})^2}{6.94 \times 10^6 m} = 8.26ms^{-2}$$

OR

$$\omega = \frac{2\pi}{T} = \frac{2\pi}{5760s} = 1.09 \times 10^{-3} \text{ ms}^{-1}$$
$$a = r\omega^2 = 6.94 \times 10^6 \times (1.09 \times 10^{-3})^2 = 8.26 \text{ ms}^{-2}$$

(ii) mg equated to gravitational force expression (1)

$$g (= a) = 8.3 \text{ ms}^{-2} \text{ substituted (1)}$$

Correct answer (1)

3

Example of calculation:

$$mg = \frac{GMm}{r^2}$$

$$\therefore 8.3 \text{ms}^{-2} = \frac{6.67 \times 10^{-11} \text{ Nm}^2 \text{ kg}^{-2} \text{ M}}{\left(6.94 \times 10^6 \text{ m}\right)^2}$$

$$\therefore M = \frac{8.3 \text{ms}^{-1} \times (6.94 \times 10^6 \text{ m})^2}{6.67 \times 10^{-11} \text{ Nm}^2 \text{ kg}^{-2}} = 6.0 \ 10^{24} \text{ kg}$$

(b) The observed wavelength is longer than the actual wavelength / the wavelength is stretched out (1)

One from:

The universe is expanding (1)

(All distant) galaxies are moving apart (1)

The (recessional) velocity of galaxies is proportional to distance (1)

The furthest out galaxies move fastest (1)

Max 2

(c) (i) A light year is the distance travelled (in a vacuum) in 1 year by light / em-radiation (1)

The idea that light has only been able to travel to us for a time equal to the age of the universe. (1)

2 Correct answer (1) **Example of calculation:** $H_0 = \frac{1}{t} = \frac{1}{12 \times 3.15 \times 10^{16} s} = 2.65 \times 10^{-18} s^{-1}$ The answer must be clear and be organised in a logical sequence There is considerable uncertainty in the value of the Hubble constant (1) **QWC** Any sensible reason for uncertainty (1) Idea that a guess implies a value obtained with little supporting evidence OR the errors are so large that our value is little better than a guess (1) [16] 5. В [1] 6. A [1] 7. D [1] 8. A [1] Use of F=mv/t or F=ma (1) 9.

(Use of v = Ho d to show) $H_0 = \frac{1}{t}$ (1)

(ii)

Answer = $2.0 \times 10^5 \text{ N (1)}$

Eg $F = 12000 \times 57 / 3.5$

(b) Arrow down labelled mg / W (1)
 Arrow up labelled eg R /reaction / force from seat (1)
 Equal length vertical arrows from a clear single point / centre of mass and "bottom" (1)

3

(c) 4mg - mg OR 3mg (1) $(m)v^2 / r \text{ seen (1)}$ Answer = 110 (m) (1)

Eg
$$3mg = mv^2/r$$

 $r = (57)^2/3g$

3

(d) Use of KE / PE conservation (1) Answer = $23 \text{ (m s}^{-1})$ (1)

Eg
$$\sqrt{12} m(57)^2 = \sqrt{2} mv^2 + mg139$$

 $v^2 = \sqrt{2} (57)^2 - 9.81 \times 139$

2

(e) Using (m)g only (1) Answer r = 54 m [allow ecf] (1)

Eg
$$mg = mv^2/r$$

 $r = (23)^2/9.81$

[12]

10. (a) $u \overline{d}$ identified (1)

1

2

(b) Conversion of G (1) Conversion of either eV or divided by c2 (1) 2.5×10^{-28} (kg) (1)

$$m = 0.14 \times 10^9 \times 1.6 \times 10^{-19} / 9 \times 10^{16}$$

QWC (c) QWC i and iii – Spelling of technical terms must be correct and the answer must be organised in a logical sequence Electric fields: Electric field provides force on the charge/proton (1) gives energy to /work done / E = qV/ accelerate protons (1) Magnetic fields: Force on moving charge/proton (1) Produces circular path/centripetal force (1) 4 labelled diagram showing Dees with E field indicated across gap OR B field through Dees (1) E field is reversed/alternates (1) Max 1 **QWC** (d) QWC i and iii – Spelling of technical terms must be correct and the answer must be organised in a logical sequence momentum (1) Zero / negligible momentum before (1) To conserve momentum (fragments go in all directions) (1) 3 [12] 11. measured thickness of lead 4-5 mm (1) (a) (i) measured radius 32 - 38 mm (1) Value between 38 - 57 mm (1)Eg actual radius = $35 \text{ mm} \times 6 \text{ mm}/4.5 \text{ mm}$ 3 Use of p = Bqr [any two values sub] (1) (ii) Answer range 9.1×10^{-21} - 1.4×10^{-20} N s or kg m s⁻¹ [allow ecf](1) 2 (b) Track gets more curved above lead / r smaller above lead (1) Must be slowing down / less momentum / loses Up [dependent on either answer above] (1) 3

Into page (1)

[ecf out of page if down in b]

(c)

	(d)	(i)	Division by 9.11×10^{-31} kg (1) Answer range $1.0 - 1.6 \times 10^{10}$ m s ⁻¹ (1)	2	
		(ii)	greater than speed of light (1) (impossible) so mass must have increased (1)	2	[13]
12.	В				[1]
13.	(a)		y act on the same body or do not act on different bodies (1) y are different types of, or they are not the same type of, force(1)	2	
	(b)		ne passenger or capsule or wheel has constant speed (1) is No resultant tangential force (acting on the passenger) (1)	2	
	(c)	Frict	ion between seat & person or push of capsule wall on person (1)	1	[5]
14.	(a)		l (linear) momentum of a system is constant, (1) ided no (resultant) external force acts on the system (1)	2	
	(b)	Use of Use of Conract Card	answer must be clear, use an appropriate style and be organised in a cal sequence of a light gate (1) of second light gate (1) nected to timer or interface + computer (accept 'log-it') (1) son gliders (1) sure length of cards (1) city = length ÷ time (1)	6	
	(c)		iplies mass \times velocity to find at least one momentum (1) $g \text{ cm s}^{-1} (0.0156 \text{ kg m s}^{-1}) \text{ before } \underline{\text{and}} \text{ after (1)}$	2	[10]

15. (a) (i) Use of $A = \pi r^2$ leading to 0.87 (m) (1)

(ii) Correct use of $\omega = 2\pi/t$ leading to 62.8 (rad s⁻¹) (1)

(iii) Correct use of $v = r\omega = 55 \text{ m s}^{-1}$ [allow use of show that value] (1)

(b) (i) Substitution into $p = \frac{1}{2} \rho A v^3$ (1) 3047 (W) (1) 2

(ii) Air is hitting at an angle/all air not stopped by blades (1)
Energy changes to heat and sound (1)

(c) (i) Attempts to find volume per second $(A \times v)$ (1) 44 kg s⁻¹ (1)

(ii) Use of $F = \Delta m v / \Delta t$ (1) F = 610 N (1)

(d) Recognises that 100 W is produced over 24 hours (1)
Estimates if this would fulfil lighting needs for a day(1)
Estimates energy used by low energy bulbs in day(1)
Conclusion (2)

The answer must be clear and be organised in a logical sequence

Example:

The 100 W is an average over the whole day. Most households would use light bulbs for 6 hours a day in no more than 4 rooms, so this would mean no other energy was needed for lighting.

4 low energy bulbs would be 44 W for 6 each hours so would require energy from the National grid.

[Accept an argument based on more light bulbs/longer hours that leads to the opposite conclusion]

[16]

5

16. (a) (i) Why speed is unchanged

Force/Weight [not acceleration] is perpendicular to velocity/motion/direction of travel/instantaneous displacement [not speed]

OR no component of force/weight in direction of velocity etc (1)

No work is done

OR No acceleration in the direction of motion (1)

2

(ii) Why it accelerates

Direction (of motion) is changing (1)

Acceleration linked to a change in velocity (1)

2

2

(b) Speed of satellite

Use of
$$a = v^2/r$$
 (1)

Correct answer [3.8 to $4.0 \times 10^3 \text{ m s}^{-1}$] (1)

Example calculation:

$$v = \sqrt{(2.7 \times 107 \text{ m} \times 0.56 \text{ m s}^{-2})}$$

[Allow 1 mark for
$$\omega = 1.4 \times 10^{-4} \,\mathrm{rad \, s^{-1}}$$
]

[6]

17. Any 8 marks from:

Recall of p = mv(1)

Use of momentum before collision = momentum after collision (1)

Correct value for speed (1)

Example:

$$1250 \times 28.0 + 3500 \text{ x} 25.5 = (1250 + 3500) v$$

$$v = 26.16 \text{ m s}^{-1}$$

Recall of ke = $1/2 \text{ mv}^2$ or ke = $p^2/2m$ (1)

Total ke before (1)

Total ke after (1)

Loss in ke (1)

Recall of work = force \times distance (1)

Correct answer for force to 2 SF (1)

Example:

Total ke before = $1\ 138\ 000\ J + 490\ 000\ J = 1\ 627\ 938\ J$

Total ke after = 1625059 J

Loss of KE = 2879 J

Braking force = 2879/5 = 576 N

Max 8

[8]

18. (a) <u>Identify particle</u>

Alpha (particle) / Helium nucleus/ ${}_2^4$ He / He ${}_2^4$ / ${}_2^4$ α / α_2^4 / ${}_2^4$ alpha/alpha ${}_2^4$ / α

1

(b) Momentum of particle

Momentum equation [In symbols or with numbers] (1)

Either

Correct substitution into $\frac{1}{2}$ mv² = energy (1)

Use the relationship to determine the mass $[6.6 \times 10^{-27} \text{ kg}]$ (1) Answer $[9.3 \times 10^{-20} \text{ (kg m s}^{-1}) \text{ Must be given to 2 sig fig. No unit error]}$ (1)

Or

Rearrangement of $E_k = \frac{1}{2} mv^2$ to give momentum ie $\frac{2E_K}{v}$ (1)

Correct substitution (1)

Answer $[9.3 \times 10^{-20} \text{ kg m s}^{-1}]$. Must be given to 2 sig fig. No unit error] (1)

Eg
$$\frac{1}{2}$$
 m(1.41 × 10⁷ m s⁻¹)² = 6.58 × 10⁻¹³ J

$$m = \frac{2 \times 6.58 \times 10^{-13} \text{ J}}{(1.41 \times 10^7 \text{ m s}^{-1})^2} = 6.6 \times 10^{-27} \text{ kg}$$

$$\begin{array}{ll} \text{momentum} &= 6.6 \times 10^{-27} \text{ kg} \times 1.41 \times 10^7 \text{ m s}^{-1} \\ &= 9.3 \times 10^{-20} \text{ (kg m s}^{-1}) \end{array}$$

Or

Momentum =
$$\frac{2 \times 6.58 \times 10^{-13} \text{ J}}{1.41 \times 10^7 \text{ m s}^{-1}} = 9.3 \times 10 \text{ (kg m s}^{-1})$$

(c) Consistent with the principle of conservation of momentum

(Since total) momentum before and after (decay) = 0 (1)

State or show momentum / velocity are in opposite directions (1)

[Values of momentum or velocity shown with opposite signs would get this mark]

Calculation ie
$$3.89 \times 10^{-25} \ kg \times 2.4 \times 10^5 \ m \ s^{-1} = 9 (.3) \times 10^{-20} \ (kg \ m \ s^{-1})$$
 (1)

Eg
$$3.89 \times 10^{-25} \text{ kg} \times 2.4 \times 10^5 \text{ m s}^{-1} = 9(.3) \times 10^{-20} \text{ kg m s}^{-1}$$

[8]

19. (a) Calculation of angular speed

Use of $\omega = 2\pi/T$ (1)

 7.27×10^{-5} [2 sig fig minimum] (1)

2

 $2\pi/(24h \times 3600 \text{ s h}^{-1}) = 7.27 \times 10^5 \text{ rad s}^{-1}$

(b) (i) <u>Calculation of acceleration</u>

Use of $a = r\omega^2$ OR $v = r\omega$ and $a = v^2/r$ (1) 0.034/031 m s⁻² (1)

2

 $(6400 \times 10^{J} \text{ m})(7.27 \times 10^{-5} \text{ rad s}^{-1})^{2} = 0.034 \text{ m s}^{-2}$

(ii) Direction of acceleration

Arrow to the left (1)

[No label needed on arrow. If more than one arrow shown, no mark unless correct arrow labelled acceleration]

1

(iii) Free-body diagram

Arrow to left labelled Weight/*W/mg*/pull of Earth/gravitational force (1)

Arrow to right labelled Normal reaction/*N/R*/push of Earth (OR ground)/(normal)contact force (1)

[Don't accept "gravity" as label]

[More than two forces max 1]

[Diagram correct except rotated gets 1 out of 2]

2

2

(iv) How the acceleration is produced

N is less than W(1)

Resultant (OR net OR unbalanced) force towards centre (1)

[Accept downward / centripetal for towards the centre, but not as an alternative to "resultant"]

[9]

20. (a) recall of p = mv [eqn or sub] (1) answer (1)

$$p = mv$$

$$= 2 \times 0.024 \times 0.88 \text{ (N s)} = 0.042(24) \text{ N s OR kg m s}^{-1}$$

2

(b) recall of KE = 1/2mv² OR p²/2m [eqn or sub] (1) answer (1)

$$KE = 1/2mv^2$$

$$= 0.5 \times 2 \times 0.024 \times 0.88 \times 0.88 \text{ (J)} = 0.0185(856) \text{ (J)}$$

OR balls do not interact with/transfer momentum to anything else 1 v = momentum/mass = 0.042(24)/0.072 = 0.5833 (0.5867) (m s⁻¹) (1)(ii) 1 (iii) $0.5 \times 0.096 \times 0.442$ OR 0.5 * B9 * C9 * C9 (1) 1 (iv) 3 points from: can't be one ball as too much KE (1) collision pretty elastic/not much loss of energy (1) so won't be 3 or 4 or 5 balls (1) 2 balls gives same energy (1) Max 3 (d) 2 points from kinetic energy is lost (as sound/through deformation/to heat) (1) OR collisions not perfectly elastic Momentum still conserved (1) as the total ke decreases (column D) more balls are in motion (1) Max 2 [12] 21. (a) 1 equating PE and KE (1) 2 recall of mv2/r (1) 3 find centripetal force = 2mg(1)4 force on rider = centripetal force + weight OR force = 3mg (1) 5 hence "g-force" = 3(1)5 (b) height not a factor, so B is correct (1) (some will reach this conclusion via much longer routes) 1 [6] 22. (a) **Table** [Ignore crosses. If more than one tick in a line, no mark.] Top line: To the left (1) 2 Bottom line: Downwards (1)

(c)

(i)

provided no external force acts (1)

(b) Calculation of rotation period

Use of $T = 2\pi r/v$ or $T = 2\pi/\omega$ and $\omega = v/r$ (1) Correct answer [0.084 s] (1)

e.g.

$$2\pi (0.28 \text{ m})/(21 \text{ m s}^{-1})$$

= 0.084 s

2

(c) (i) How the angular speed is affected

 ω is increased, plus correct supporting argument in formula or words (1) i.e. Since $v = r\omega / T$ decreases / fincreases / wheel must turn faster

1

(ii) Speedometer reading

Speedometer reading is too high because frequency (1)

(OR ω OR revs per second OR rate of rotation of wheel) is increased

[Allow ecf from " ω decreased" in c (i)]

[6]

23. (a) Show that

See 'v =
$$\frac{2\pi r}{T}$$
' OR ' $\omega = \frac{2\pi r}{T}$ ' (1)

Substitution of $(60 \times 60 \times 24)$ s or 86400s for T (giving 7.27×10^{-5} , no u.e.) (1)

Unit of ω

$$s^{-1}/rad s^{-1}$$
 (1)

(b) Height above Earth's surface

Statement / use of
$$\frac{GM_Em}{r^2} = \frac{mv^2}{r} OR \frac{GM_Em}{r^2} = mr\omega^2$$
 (1)

[Equations may be given in terms of accelerations rather than forces] [Third mark (from below) may also be awarded here if $(r_E + h)$ is used for r]

Correct value for r, i.e. $4.2(3) \times 10^7$ m (1)

Use of $h = \text{their } r - R_{\text{E}}$ (1)

Correct answer = $(3.58 - 3.60) \times 10^7$ m [no ecf] (1)

Example of answer:

$$\frac{GM_E m}{r^2} = \frac{mv^2}{r}$$

$$\Rightarrow \frac{GM_E}{r^2} = \frac{v^2}{r} = \frac{(\omega r)^2}{r} = \omega^2 r$$

$$\therefore GM_E = \omega^2 r^3$$

$$\therefore r = \sqrt[3]{\frac{GM_E}{\omega^2}} = \sqrt[3]{\frac{6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2} \times 5.98 \times 10^{24} \text{ kg}}{(7.27 \times 10^{-5} \text{ s}^{-1})^2}}$$

$$= 4.23 \times 10^7 \text{ m}$$

$$\therefore h = 4.23 \times 10^7 \text{ m} - 6.38 \times 10^6 \text{ m}$$

$$= 3.59 \times 10^7 \text{ m}$$

- 24. (i) two correct arrows [ignore labelling] (1)
 - (ii) Some use of mv^2/r with v correctly subbed OR $mr\omega^2$ with v correctly used (1) [subbing may happen later in answer]

 $T\cos\theta = mg\ mg$

OR $T \sin \theta = mv^2/r$ [either gains (1)] (1)

$$\Rightarrow$$
 tan $\theta = v^2/rg$ (1)

$$\Rightarrow r = v^2/g \tan \theta$$

$$=30\times30/9.81\times tan~20~m$$

$$= 252 \text{ m } (1)$$

25. (a) Expression for gravitational force: $F = GMm/r^2$ (1)

4

4

[7]

[5]

(b) Expression for gravitational field strength:

g = force on 1 kg, so
$$g = GM/r^2$$
, or g = F/m so $g = GM/r^2$

1

(c) Radius of geostationary orbit:

Idea that a = g, and suitable expression for a quoted [can be in terms of forces] (1) substitution for velocity in terms of T(1) algebra to obtain required result (1)

3

Example of derivation:

$$g = v^2/r$$
 or $g = \omega^2 r$
and $v = 2\pi r/T$ or $\omega = 2\pi/T$
so $(2\pi r/T)^2/r = GM/r^2$ or $(2\pi/T)^2 r = GM/r^2$, leading to expression given

5

(d) <u>Calculation of radius:</u>

Substitution into expression given (1)

Correct answer
$$[4.2 \times 10^7 \text{ m}]$$
 (1)

2

Example of calculation:

$$r^3 = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2} \times 6.0 \times 10^{24} \text{ kg} \times (24 \times 60 \times 60 \text{ s})^2 / 4\pi^2$$

= $7.6 \times 10^{22} \text{ m}^3$
So $r = 4.2 \times 10^7 \text{ m}$

(e) (i) Satellite with greater mass:

Yes – because, in geostationary orbit, r constant so acceleration remains the same, regardless of mass (1)

(ii) Satellite with greater speed:

No + suitable argument (1) [e.g. for geostationary orbit, T and r are fixed, so v cannot increase $(v = 2\pi r/T)$]

2

(f) Why satellite must be over equator:

Idea that centre of satellite's orbit must be the centre of the Earth (can be shown on diagram) (1) there must be a common axis of rotation for the satellite and the Earth / the satellite's orbit must be at right angles to the spin axis of the Earth (1)

2

[11]

Momentum at impact **26.** (a)

p = mv seen or used (1)

Answer $[11 \text{ kg m s}^{-1}]$ (1)

2

eg momentum = $0.42 \text{ kg} \times 27 \text{ m s}^{-1}$ $= 11.34 \text{ kg m s}^{-1}$

(b) Momentum at release

Minus (1)

 8.4 kg m s^{-1} (1)

2

(c) Average force(ecf momenta values) (i)

Use of $F = \frac{\Delta p}{\Delta t}$ ie for using a momentum value divided by (1)

0.22

Adding momentum values (1)

Answer [88.0 N - 89.8 N] (1)

$$F = \frac{-8.4 \text{ kg m s}^{-1} - 11.3 \text{ kg m s}^{-1}}{0.22 \text{ s}}$$

$$F = (-) 89.5 N$$

 \mathbf{Or}

Use of F = ma(1)

Adding velocities to calculate acceleration (1)

Answer [88.0 N - 89.8 N] (1)

Eg acceleration =
$$\frac{-20 \, \text{m s}^{-1} - 27 \, \text{m s}^{-1}}{0.22 \, \text{s}}$$
 (= -213.6 m s⁻²)

Force =
$$0.42 \text{ kg} \times -213.6 \text{ m s}^{-2} = (-)89.7(2) \text{ N}$$

3

Direction of force on diagram (ii)

Right to left (1)

[Accept arrow drawn anywhere on the diagram. Label not required]

1

Difference and similarity (d)

Difference: opposite direction / acts on different object (1)

Similarity: same type of force / same size / acts along same line / (1)

act for same time / same size impulse

['Magnitude' and 'size' on their own is sufficient. 'They are equal'

is OK. Accept; they are both contact forces; they are both

electrostatic forces]

2

[10]

27. (a) E_K of helium nucleus

Use of
$$E_K = \frac{1}{2} m v^2$$
 (1)

Answer [3.1×10^{-15} J. No ue. Min 2 sig fig required] (1)

eg
$$E_K = \frac{1}{2} \times 6.65 \times 10^{-27} \text{ kg} \times (9.65 \times 10^5 \text{ m s}^{-1})^2$$

= $3.096 \times 10^{-15} \text{ J}$

(b) (i) <u>Loss of E_K of proton</u> [ecf their value for EK of helium nucleus] $3 \times 10^{-15} \text{ J or } 3.1 \times 10^{-15} \text{ J (1)}$

(ii) Speed of proton after collision

[ecf their value for loss of EK of proton, but not if they have given it as zero]

Calculation of initial E_K of proton (1)

Subtraction of
$$3.1 \times 10^{-15} \text{ J} [= 1.7 \times 10^{-15} \text{ J}]$$
 (1)

Answer
$$[(1.40 - 1.50) \times 10^6 \text{ m s}^{-1}]$$
 (1)

eg
$$E_K = \frac{1}{2} 1.67 \times 10^{-27} \text{ kg} \times (2.4 \times 10^6 \text{ m s}^{-1})^2 (= 4.8 \times 10^{-15} \text{ J})$$

$$E_K$$
 after collision = $4.8 \times 10^{-15} \, J - 3.1 \times 10^{-15} \, J$ (= $1.7 \times 10^{-15} \, J$)

$$v = \left(\frac{1.7 \times 10^{-15} \text{ J}}{0.5 \times 1.67 \times 10^{-27} \text{ kg}}\right) = 1.43 \times 10^6 \text{ m s}^{-1}$$

Or

Use of the principle of conservation of momentum. (1) Correct expression for the total momentum after the collision (1)

Answer $[(1.40 - 1.50) \times 10^6 \,\mathrm{m s}^{-1}]$ (1)

$$\begin{split} Eg~1.67\times 10^{-27}~kg\times 2.4\times 10^6~m~s^{-1}\\ &=6.65\times 10^{-27}~kg\times (9.65\times 10^5~m~s^{-1})+1.67\times 10^{-27}~kg\times V\\ V=-1.44\times 10^6~m~s^{-1} \end{split}$$

[For both these solutions allow the second marking point to candidates who incorrectly write:

the mass of the proton as 1.6×10^{-27} kg or 1.7×10^{-27} kg, or the mass of the helium as 6.6×10^{-27} kg or 6.7×10^{-27} kg or the velocity as 9.6×10^5 m s⁻¹ or 9.7×10^5 m s⁻¹]

(c) Other factor conserved

Momentum / mass / charge / total energy (1)

[7]

3

2

28. R drawn [10° to vertical] (1) (a) D drawn [10° to horizontal] (1) drag force D = 140 - 155 N [147.6 N by calc is OK] (1)3 (b) Resolve vertically (1) correct value (1) $eg P cos 40^{\circ} = 850 N$ $\Rightarrow P = 1100 \text{ N}$ 2 (c) velocity not constant / direction changing (1) [NOT "if no force, goes straight"] acceleration (towards centre of circle) (1) (Any 2) F = ma(1)2 P/push of ice (on sled) (1) (ii) horizontal component (1) 2 ["additional centripetal force" = 0] Recall circular motion formula (1) resolve horizontally (1) correct value (1) [incorrect force is eop] [also possible: W.tan40 = mv^2/r (1)(1)] eg $F = P \sin 40 = 713 (643) (N)$ [formula or value] $R = mv^2/F$ $= 87 \times 35^2 / 713 (643) (m)$ radius = 149 (166) m 3 [12]

29. (a) Newton's Second Law of Motion

(The) force (acting on a body) is proportional/equal to the rate of (1) **change** of momentum (1) and acts in the direction of the momentum change [accept symbols if all correctly defined for the first of these marks] [ignore any information that is given that is not contradictory]

(i) <u>Calculate the mass</u>

Correct calculation for volume of air reaching tree per second [Do not penalise unit error or omission of unit] (1) Correct value for mass of air to at least 3 sig fig [246 kg. No ue.] (1) [If $1.23 \times 10 \times 20 = 246$ kg is seen give both marks. Any order for the numbers]

Example

$$20 \text{ ms}^{-1} \times 10 \text{m}^2 = 200 \text{ m}^3$$

 $1.23 \text{ kg m}^{-3} \times 200 \text{ m}^3 = 246 \text{ kg}$

(ii) Calculate the momentum

Answer: [$(246 \text{ kg} \times 20 \text{ m s}^{-1} =) 4920 \text{ kg m s}^{-1}$] [Accept $(250 \text{ kg} \times 20 \text{ m s}^{-1} =) 5000 \text{ kg m s}^{-1}$. Accept 4900 kg m s^{-1} . (1) 2 Ecf value for mass. Ignore signs in front of values.]

(iii) Magnitude of the force

Answer: [F = 4920 N or 5000 N or 4900 N.] [Ecf value from b(ii). Ignore signs in front of values] (1)

[6]

[4]

30. Explanation

There is a resultant (or net or unbalanced) force (1)

Plus any 3 of following:-

Direction of motion is changing (1)

Velocity is changing (1)

Velocity change implies acceleration (1)

Force produces acceleration by F = ma (or N2) (1)

Force (or acceleration) is towards centre / there is a centripetal (1)

force (or acceleration) / no force (or acceleration) parallel to motion

No work done, so speed is constant (1)

Max 3

31. Speed of sphere

Momentum conserved [stated or implied] [1]

Correct subs L.H.S or R.H.S of conservation of momentum equation (1)

3

Correct answer [$v = 1.43 \text{(m s}^{-1})$] (1)

Example of calculation:

$$54 \times 2.57 (+ 0) = 54 \times v + 29 \times 2.12 (g \text{ m s}^{-1})$$

 $\Rightarrow 138.78 = 54 \times v + 61.48$
 $\Rightarrow v = 1.43 (\text{m s}^{-1})$

Elastic or inelastic collision

Recall K.E: $1/2mv^2(1)$

Correct values for both KEs [178(mJ), 120(mJ), no ue](1)

Conclusion consistent with their results for KE(1)

3

[max 1 if only words used and inelastic \equiv energy lost implied]

Example of calculation:

=
$$\frac{1}{2}$$
 × 54 × 2.57² = 178 mJ
Final total K.E: $\frac{1}{2}$ × 29 × 2.12² + $\frac{1}{2}$ × 54 × 1.43² mJ
= 65 mJ + 55 mJ
= 120 mJ
⇒ Inelastic

Average speed of the spheres

Recall
$$v = 2\pi r / t$$
 (1)

Correct answer
$$[2.9 \text{ m s}^{-1}]$$
 (1)

2

Example of calculation:

$$v = 2\pi r / t = \pi \times 0.17 \times 2 \text{ m} / 0.37 \text{ s}$$

= 2.9 m s⁻¹ or 290 cm/s

Calculation of centripetal force

Recall
$$F = mv^2 / r$$
 OR $mr\omega^2$ OR $m v \omega$ (1)
Correct answer [1.43 N, ecf for their v] (1)

2

Example of calculation:

$$F = mv^2 / r$$

= 0.029 × 2.9² / 0.17 N [watch out for 29 twice]
= 1.43 N [ecf]

Tension

Weight of sphere (= $mg = 0.029 \times 9.81 \text{ N} =)0.28 \text{ N}$ (1)

$$T = F - W \text{ OR } F = T + W \text{ [using their values for } F \text{ and } T \text{] (1)}$$

2

Example of calculation:

$$= 1.43 - 0.28 \text{ (N)}$$
$$\Rightarrow T = 1.15 \text{ N}$$

[12]

□È32. Smoke detectors

Recognition that mass alpha = 4(1)

Idea of - 4 to find resulting nucleus mass [237] (1)

 $Mu_{\text{daughter product}} = mv_{\text{alpha}}$ or momentum equations in context (1)

 $v_{\text{alpha}} = 59(.25) \ u_{\text{daughter product}}$ [allow ecf incorrect masses eg 4 and 241 : 60.25] (1)

Use of $\frac{1}{2}$ mv² To give ratio = 59(.25) [allow ecf as long as rounds (1)

to 60; must have speeds sub; valid use of $p^2/2m$]

Energy:

 $E = mc^2$ / energy must have come from mass (1)

Total mass after is a (little) less than before/mass loss/mass defect/binding energy (1)

max 6

[6]

33. (a) From what height?

Use of $mg\Delta h$ and $\frac{1}{2}mv^2$ (1)

[ignore power of 10 errors]

$$mg \Delta h = \frac{1}{2} mv^2$$
 (1)

[shown as formulae without substitution, or as numbers substituted into formulae]

Answer [0.8(2) m] (1)

[It is possible to get 0.8 m by a wrong method:

- If $v^2 = u^2 + 2as$ is used, award 0 marks
- If you see v^2/a then apply bod and up to 2/3 marks the 2^{nd} and 3^{rd} marks. Note that v^2/g is correct and gains the first 2 marks, with the 3^{rd} mark if 0.8 m is calculated]

$$80 \times (10^{-3}) \text{ kg} \times 9.81 \text{ N kg}^{-1} \times \Delta h = \frac{1}{2} \times 80 \text{ (\times 10}^{-3}\text{) kg} \times (4 \text{ m s}^{-1})^2$$

$$h = \frac{0.5 \times 80 \times 10^{-3} \text{ kg} \times (4 \text{ ms}^{-1})^2}{80 \times 10^{-3} \text{ kg} \times 9.81 \text{ N kg}^{-1}}$$

$$= 0.8(2) \text{ m}$$

(b) (i) Law of conservation of linear momentum

Provided no external [other/resultant/outside] force acts (1)
The total momentum (of a system) does not change / total momentum (1)
before(collision) = total momentum after (collision)
[Total seen at least once] [Ignore all references to elastic and inelastic]
[Do not credit simple statement that momentum is conserved]

(ii) Speed of trucks after collision

Any correct calculation of momentum (1)

Use of conservation of momentum leading to the answer $1.3(3) \text{ m s}^{-1}$ (1)

$$80 \times (10^{-3}) \text{ kg} \times 4 \text{ m s}^{-1} = 240 \times (10^{-3}) \text{ kg} \times \text{u, giving u} = 1.3(3) \text{ m s}^{-1}$$

(c) Time for trucks to stop

[Do not penalise candidates for using a total frictional force of $0.36 \, \text{N}$. $3/3 \, \text{possible}$]

Either

Correct use of power = $f \times v$ and $\frac{1}{2} mv^2$ (1) [Do not penalise power of 10 errors or not dividing by 2 in $f \times V$ equation]

Use of energy divided by power (1)

Answer in range 2.6 s to 2.7 s (1) [ecf their value for u]

$$P = 0.12 \text{ N} \times \frac{1.33}{2} \text{ m s}^{-1} = 0.08 \text{W}$$

$$KE = \frac{1}{2} \times (3) \times 80 \times (10^{-3}) \text{ kg} \times (1.33 \text{ m s}^{-1})^2 = 0.21 \text{ J}$$

$$\frac{Energy}{power} = \frac{0.21 \,J}{0.08 \,W}$$

$$t = 2.6(5) s$$

[accept 2.6 or 2.7 as rounding]

3

OR

Use of F = ma(1)

Use of either
$$v = u + at$$
 i.e or $a = \frac{\Delta v}{t}$ (1)

Answer in range 2.6 s to 2.7 s (1)

$$(-)0.12 \text{ N} = (3) \times 80 \times (10^{-3}) \text{ kg} \times a \text{ (a = (-)0.5 m s}^{-2})$$

$$0 = 1.33 \text{ m s}^{-1} - 0.5 \text{ m s}^{-2} \times \text{t or } (-)0.5 \text{ m s}^{-2} = \frac{(-)1.33 \text{ m s}^{-1}}{t}$$

$$t = 2.6(6) \text{ s}$$

OR

Select $Ft = \Delta p$ (1)

Substitution (-)0.12 $t = (-3) \times 80 \times (10^{-3}) \text{ kg} \times 1.33 \text{ m s}^{-1}$ (1)

Allow omission of any bracketed value]

Answer in range 2.6 s to 2.7 s (1)

[10]

34. (a) Radius of circular path

Correct use of $v = \frac{2\pi r}{T}$ (allow substitution of their T) (1)

Radius =
$$70 - 80 \text{ m} (74.48 \text{ m}) (1)$$

2

(b) Resultant force

$$F = \frac{mv^2}{r}$$
 [seen or used] (1)

Force = 0.08 N (0.077 N) [Allow ecf of their radius.] (1)

Towards the centre of the circular path / towards hub. (1)

(c) Forces on the man

(i) Force P : <u>Normal</u> contact/reaction force / EM force / push of (1) capsule or floor <u>on man</u>

Force Q: Pull of Earth on man / weight / gravitational pull (1)

2

(ii) Resultant force (to centre) (1) (at A provided by) friction (1)

2

1

(iii) at B resultant provided (by force Q being greater than P) (1)

[10]

35. <u>Direction</u>

Force → centre/perpendicular to velocity/motion (1) [Accept sideways/inwards]

1

Why force required

2 of:

Changing direction /charging velocity (1)

Acceleration (1)

Reference to or explanation in terms of NI or NII (1)

Max 2

What provides force

Friction between tyres and road surface (1)

1

Maximum speed

$$F = mv^2/r$$
 [Accept $F = mr\omega^2$] (1)

$$\Rightarrow v = \sqrt{\frac{Fr}{m}} \text{ OR } \sqrt{\frac{470 \times 14}{160}} \text{ (1)}$$

$$= 6.4 \text{ m s}^{-1}$$
 (1)

3

Why skid occurs

Smaller r(1)

$$\Rightarrow F(mv^2/r)$$
 (required) increases / use of $F = mv^2/r$ to deduce v decreases (1)

Only 470 N (available) / the force is the same (1)

Explanation

(*m* increased \Rightarrow) *F* (needed) increases (1)

EITHER only 470 N available or the force is the same \Rightarrow NO

OR friction increases as mass increases(\Rightarrow YES) (1)

[12]

36. (a) Resultant force required

The direction of speed OR velocity is changing (1)

There is an acceleration/rate of change in momentum (1)

2

2

(b) (i) Angular speed

Use of an angle divided by a time (1)

$$7.3 \times 10^{-5} \text{ rad s}^{-1} \text{ OR } 0.26 \text{ rad h}^{-1} \text{ OR } 4.2 \times 10^{-3} \text{ o s}^{-1} \text{ OR } 15^{\circ} \text{ h}^{-1} \text{ (1)}$$

(ii) Resultant force on student

Use of
$$F = mr\omega^2$$
 OR $v = r\omega$ with $F = \frac{mv^2}{r}$ (1)

2

3

(iii) Scale reading

Evidence of contact force = mg - resultant force (1)

Weight of girl = 588 (N) OR 589 (N) OR 60×9.81 (N) (1)

Scale reading = 586 N OR 587 N [ecf their
$$mg$$
 – their F] (1)

[9]

37. Speed of car 2

$$v^2 - u^2 = 2as$$

$$\Rightarrow$$
 (-) $u^2 =$ (-) 2 × 3.43 × 23.9 [substitution or rearrange] (m s⁻¹) (1)

$$\Rightarrow u = 12.8 \text{ (m s}^{-1}) \text{ [value] (1)}$$

2

Magnitude of the momentum of car 2

$$p = m \upsilon (1)$$

$$= 1430 \times 12.8 (13) (kg m s^{-1})$$

=
$$18\ 300\ (18\ 600)\ N\ s\ or\ kg\ m\ s^{-1}\ (1)$$

Calculation of easterly component of momentum

Component = momentum $\times \cos \theta$ (1)

Car 1: 23 800 Ns × cos 45

= 16800 N s (1)

Car 2: 18 300 (18 600) N s \times cos 30 = 15 800 (16 100) N s (1)

3

Whether car 1 was speeding before accident

(Sum of two easterly components) ~ 33 000 N s [ecf] (1)

$$(\div \text{ mass of car 1}) \Rightarrow \sim 16.8 \text{ m s}^{-1} \text{ [ecf] (1)}$$

Conclusion related to speed limit (17.8 m s⁻¹) (1)

3

Explanation of how investigator could use conservation law

Any two from:

- Momentum conservation
- After collision there is significant northerly momentum
- Before collision car 1 had no northerly momentum/only car 2 had northerly momentum (1) (1)

[12]

38. <u>Momentum of neutron</u>

Use of p = m v(1)

$$p = 5.03 \times 10^{-20} \text{ N s/kg m s}^{-1}$$
 (1)

2

2

Speed of nucleus

Total mass attempted to be found (1)

Conservation of momentum used (1)

$$v = 2.01 \times 10^6 \,\mathrm{m \ s^{-1}} \,[\text{ecf from } p \text{ above only}] \,(1)$$

3

3

Whether collision was elastic

Use of k.e. = $\frac{1}{2} m v^2$ (1)

$$ke = 7.45 \times 10^{-13} (J) / 5.06 \times 10^{-14} (J) (ecf) (1)$$

A correct comment based on their two values of ke. (1)

[8]

39. Resultant force

Direction of travel changing (1)

Velocity changing/accelerating (1)

<u>Force</u> is towards centre of circle (1)

Why no sharp bends

Relate sharpness of bend to r(1)

Relate values of v, r and F (1)

[e.g. if r large, v can be large without force being too large/if r small, v must be small to prevent force being too large]

Bobsleigh

 $N\cos\theta = mg(1)$

 $N\sin\theta(1)$

 $= mv^2/r \text{ or } ma(1)$

Proof successfully completed [consequent on using correct formula] (1) 4

Calculation of angle

 $77 - 78^{\circ}$ (1)

[10]

3

40. Discussion of type of collision

Inelastic (1)

Energy \rightarrow heat at impact/plastic deformation (1) 2

Momentum vector diagram

Diagram [right–angle triangle with arrows on two perpendicular sides] (1)

Labelling (1)

Castalia $1.2 \times 10^{-12} \, kg \times 25~000 \; m \; s^{-1}$ (= $3 \times 10^{16} \; N \; s$)

Calculation of change in direction

$$\theta/\sin\theta/\tan\theta = \frac{5.8 \times 10^6 \times 35000}{1.2 \times 10^{12} \times 25000}$$

$$=6.77\times10^{-6}$$
 (1)

$$\theta = 6.8 \times 10^{-6} \text{ rad OR } 3.9 \times 10^{-4} \text{ degrees OR } 1.4 \text{ seconds (1)}$$

Formula for net force in terms of momentum

$$F = d/dt (mv) OR words (1)$$

Calculation of number of rockets required

$$N \times F \times t = 2 \times 10^{11} \text{ OR } N = 2 \times 10^{11} / (7 \times 10^6 \times 130)$$
 (1)

$$N = 220$$
 [must be a whole number] (1)

41. Speed of rim of drum

$$v = r\omega$$
 or $v = 2\pi r/T$ [either used] (1)

$$\omega = \frac{2\pi \times 800 \text{ rev min}^{-1}}{60 \text{ s}} \text{ OR } T = \frac{60 \text{ s}}{800 \text{ rev min}^{-1}} \text{ (1)}$$

$$= 18.4 \text{ m s}^{-1} [3 \text{ sf min.}] \text{ (no ue) } (1)$$

Acceleration

Use of
$$a = r\omega^2$$
 OR $a = v^2/r$ (1)
1.5 × 10³ ms⁻² (1)

Arrow labelled A towards centre of drum (1)

Arrow of path

[9]

2

2

42. Mass of head of mallet

Selecting density x volume (1)

Correct substitutions (1)

Mass = 1.15 (kg) [3 significant figures, minimum] (1)

3

Momentum change

$$p = mv$$
 used (1)

$$\Delta p = 1.15 \text{ or } 1.2 \text{ kg } (4.20 + 0.58) \text{ m s}^{-1} (1)$$

 $= 5.50 / 5.74 \text{ kg m s}^{-1}/\text{N s}$ (1)

3

Average force

Their above / 0.012 s (1)

 $F = 458/478 \text{ N [e.c.f. } \Delta p \text{ above] } (1)$

2

Value for force

Handle mass/weight/ head weight/force exerted by user (handle)

neglected (1)

1

2

4

Effectiveness of mallet with rubber head

 Δt goes up/ Δp goes up (1)

 \Rightarrow less force, less effective/more force, more effective [consequent] (1)

[11]

43. Homogeneity

 $p = \text{mass} \times \text{velocity}$ (1)

p units N s or kg m s⁻¹ [This alone implies above mark] (1)

E unit (J) N m or kg m 2 s $^{-2}$ (1)

 $c \text{ unit m s}^{-1} (1)$

[4]

44. Magnitude of F

 $F = mv^2/r$ (1)

Towards the centre (1)

2

Calculation

- (i) $9.07 \times 10^3 \text{ N (1)}$
- (ii) $R = mg mv^{2} / r (1)$ Substitutions (1) $5.37 \times 10^{3} \text{ N}$

[Calculation of $mv^2/r \max 1$] (1)

4

Explanation

Required centripetal force > mg (so cannot be provided) (1)

1

Critical speed

Use of $(m)g = (m)v^2/r$ (1) 15.7 m s⁻¹ (1)

2

2

Apparently weightless

This means no force exerted on/by surroundings OR R = 0 OR only force acting is weight (1)

When car takes off it is in free fall [consequent] (1)

[11]

45. <u>Direction of centripetal acceleration</u>

Towards centre/downwards/inwards (1)

1

Explanation

F=ma

a and F in same direction (1)

Resultant force

$$v = \frac{2\pi r}{T} = \frac{2\pi \times 8}{4.5}$$
 [Equation OR substitution] (1)

$$= 11.2 \text{ m s}^{-1} (1)$$

$$F = \frac{mv^2}{r} = \frac{60 \times 11.2^2}{8}$$
 [Equation OR substitution] (1)

$$= 936 N (1)$$

OR
$$w = \frac{2\pi}{T} = \frac{2\pi}{4.5}$$
 [Equation OR substitution] (1)

$$= 1.396 \text{ rad s}^{-1} (1)$$

$$F = mrw^2 \tag{*}$$

$$= 60 \times 8 \times 1.4^{2}$$

$$= 936 \text{ N (1)}$$
(*) [(*) Equation OR substitution] (1)

Calculation of weight

$$W = mg = 60 \times 9.81$$

= 589 N (1)

4

Calculation of magnitude of push

$$F_{\text{net}} = W + P$$

$$F_{\text{net}} = W + P$$

 $P = F - W = 936 - 589$

$$= 347 \text{ N} (1)$$

Diagram

$$W \downarrow (1)$$

$$P \uparrow (\mathbf{1})$$

[10]

46. Deceleration of Earth

2

in 1 second: Δv for debris = 3×10^4 m s⁻¹

$$\Rightarrow a = 3 \times 10^4 \text{ m s}^{-2}$$

$$F = ma = 7 \text{ kg} \times 3 \times 10^4 \text{ ms}^{-2}$$

= 2.1 × 10⁵ N (1) (1)

F on Earth = F on debris

$$\Rightarrow a_{\text{earth}} = F/m = \frac{2.1 \times 10^5 \,\text{N}}{6 \times 10^{24} \,\text{kg}}$$

=
$$3.5 \times 10^{-20} \text{ m s}^{-2}$$
 (1) (1)

OR Conservation of momentum
$$\{ (1) \}$$
 or $m_1u_1 + m_2v_2 = m_3v_3$ etc $\{ (1) \}$

$$6 \times 10^{24} \times 3 \times 10^{4} (+7 \times 0) = (6 \times 10^{24} + 7) \times v_{3}$$
 (1)

OR An answer $(3.5 \times 10^{-20} \text{ m s}^{-2})$ calculated from any specific (1) (1) (1) arbitrary time] (1)

Comment: negligible (1)

[OR energy loss negligible]

[5]

4

1

1

47. Momentum and its unit

 $Momentum = mass \times velocity$

 $kg m s^{-1} or N s$

Momentum of thorium nucleus before the decay

Zero 1

Speed of alpha particle/radium nucleus and directions of travel

Alpha particle because its mass is smaller/lighter 1

So higher speed for the same (magnitude of) momentum

OR N3 argument

Opposite directions/along a line

48. Angular speed

Use of $\omega = 2\pi/T$

 $\omega = 1.2 \times 10^{-3}$ [min 2 significant figures) [No ue as units given]

[6]

Free-body force diagram

Pull of Earth/Weight/mg/Gravitational Pull

1

Why satellite is accelerating

Resultant/Net/Unbalanced force on satellite must have an acceleration OR $\Sigma F = ma$.

1

1

1

-

Magnitude of acceleration

Use of
$$a = \omega^2 r$$
 OR $\upsilon^2 \div r$
 $a = 9.36-9.42$ OR 6.5 m s⁻²

[Depends on which ω value used]

[6]

49. Why person moving in a circle must have an acceleration

Acceleration due to changing direction

OR

If not it would continue in straight line (1)

1

Centripetal acceleration

$$a = \frac{v^{2}}{r} OR rw^{2} (1)$$

$$v = \frac{2\pi r}{T} = \frac{2\pi \times 6.4 \times 10^{6}}{24 \times 60 \times 60} = 465 \text{(ms}^{-1})$$
OR
$$w = 7.3 \times 10^{-5} \text{(rad s}^{-1})$$

$$\Rightarrow a = 0.034 \text{ (m s}^{-2}) \text{ [no u.e.] (1)}$$

Which force is the larger

mg is larger than R/R is smaller than mg (1)

mg - R / centripetal/accelerating/resultant force acts towards centre (1)

2

1

Differing apparent field strength

$$(0.034 \div 9.81) \times 100\%$$

= 0.35%

OR
$$(0.03 \div 9.81) \times 100\% = 0.31\%$$
 [NOT 0.3%] (1)

[6]

50. Explanation of Pelton wheel

Quote of $F = \Delta m v/t$ [or in words] (1)

Negative moment/velocity after (1)

Increased (twice) momentum / velocity change/mv - mu compared with falling off plane paddle (1)

Idea of doubled (1)

Max 3

Percentage efficiency of station

Energy available = mgh(1)

Power input = $270 \times 9.8 \times 250$ (1)

Efficiency = $500\ 000 \times 100\ /\ 661\ 500 = 76\ (\%)\ (1)$

3

Other desirable properties

For example:

Hard – does not wear/scratch/dent (2)

Tough – can withstand dynamic loads/plastic deformation (2)

Strong – high breaking stress/force (2)

Smooth – low friction surface (2)

Durable – properties do not worsen with time (2)

Max 4

Time to repay initial investment

Each hour worth $500 \times 0.0474 = £23.70$ OR total no of kW h required $1.000000/0.0474 = 2.1 \times 10^7$

No. of hours to repay = $1\ 000\ 000\ /23.70\ OR\ 2.1\times 10^7\ /500$

 $24 \times 365 = 4.8$ years to repay debt (1)

Assumption

Constant power production / no interest charges / no repair costs no wages for employees (1)

[14]

51. Angular speed

Conversion of 91 into seconds – here or in a calculation (1)

Use of $T = 2\pi/\omega$ allow $T = 360/\omega$

$$\omega = 1.15 - 1.20 \times 10^{-3} \text{ rad s}^{-1} / 6.9 \times 10^{-2} \text{ rad min}^{-1} / 0.066 \text{ deg s}^{-1}$$
 (1)

3

3

3

Acceleration

Use of $a = r\omega^2 / \upsilon^2 / r$ (1)

Adding 6370 (km) to 210 (km)/6580 (km) (1)

$$a = 8.5$$
 to 9.5 m s⁻² [No e.c.f. for 210 missed but allow for ω in rad s⁻¹] (1)

Resultant force

Recall/Use of F = ma (1)

F = 35 - 39 N [Allow e.c.f their a above only] (1)

Towards (centre of the) Earth (1)

[9]

52. How ions are accelerated

Electric field exists between +, – electrodes (1)

 \Rightarrow force on ions / force \rightarrow acceleration (1)

Speed of xenon atom

$$eV = \frac{1}{2} mv^2 / eV = E_k (1)$$

$$\Rightarrow v = \sqrt{2eV/m}$$
 (1)

$$= \sqrt{\frac{2 \times 1.6 \times 10^{-19} \times (1060 + 225)}{2.2 \times 10^{-25}}} \text{ms}^{-1}$$
 (1)

=
$$4.3 \times 10^4$$
 m s⁻¹ [No u.e.] (1)

4

Thrust on space probe

Force = rate of change of momentum (1)

$$= 2.1 \times 10^{-6} \times 43~000 \text{ N (1)}$$

$$= 0.090 N (1)$$

3

[Using 4×10^4 m s⁻¹ gives F = 0.084 N]

Reason for reduced thrust

Xenon ions attracted back OR similar (1)

1

Why ion drives maybe preferable

Any two from:

- less fuel required in total
- for example, 66 kg for a year
- thrust provided for longer/fuel lasts longer/accelerates for longer
- lower payload for initial launch/ion drive lighter (1) (1)

2


[12]

53. <u>Diagrams showing forces:</u>

Diagram 1

Diagram 2

2

[Each diagram, one arrow only]

Discussion re artificial gravity

Any four from:

- centripetal force, in context
- forces felt by astronaut both "upward"
- so feels like weight/gravity
- $a v^2/r / F = mv^2 / r / a = \omega^2 r / F = m\omega^2 r / F = m v \omega$

•
$$=$$
 $\left(\frac{2\pi r}{t}\right)^2 / r = \frac{4\pi^2 r}{t^2} = \frac{4\pi^2 \times (10/2)}{10^2}$ [Any one] or calculate υ or ω

- $= 2.0 \text{ m s}^{-2} [\text{No u.e.}]$
- artificial field varies with $/ \alpha$ radius (1) (1) (1)

 \equiv 1.6 N kg⁻¹ [to one significant figure] OR other justification [e.c.f] (1) 1

[7]

4

54. **Experiment**

2 light gates (1)

Gate gives time trolley takes to pass [not just 'the time'] (1) Speed = length of 'interrupter'/time taken (1)

OR

2 ticker timers (1)

Dots at known time intervals (1)

Speed = length of tape section/time taken (1) 3

[ruler + clock could obtain third mark only, specifying a length/time]

Total momentum of trolleys

Zero (1)

It was zero initially **or** momentum is conserved [consequent] (1)

2

Speed v of A

Use of momentum = $mass \times velocity$ (1)

Use of mass \times speed (A) = mass \times speed (B) (1)

 1.8 m s^{-1} [ignore -ve signs] (1) 3

55. Magnitude of charges

Value of v or ω (v = 1023 ms⁻¹, ω = 2.7 × 10 ⁻⁶ s⁻¹) (1)

Value of a ($a = 2.7 \times 10^{-3} \text{ ms}^{-2}$) (1)

$$F = \frac{mv^2}{r} \quad (1)$$

[8]

Value of $F (F = 2 \times 10^{20} \text{ N})$ (1)

$$F = \frac{kQ_1Q_2}{r^2} \ (1)$$

Charge =
$$5.7 \times 10^{13}$$
 C (1)

[Use of $\frac{GMm}{r^2}$ to calculate *F*:

Allow M_e in range $10^{24} - 10^{25}$ kg without penalty, otherwise max 4 for question.]

56. <u>Discussion:</u>

No equilibrium or there is a <u>resultant</u> force (1)

Direction changing or otherwise would move in a straight line

(or off at an tangent) (1)

acceleration or velocity changing (1)

Force towards centre or centripetal (1)

The <u>tension</u> provides this force [consequent] (1)

[OR for last 2 marks: weight of ball acts downwards (1)

vertical component of tension balances it (1)]

5

Free-body diagram:

W/weight/mg/gravitational 'attraction' [not 'gravity'] (1)

[6]

57. <u>Calculation of total momentum:</u>

In 1 s,
$$p = 1400 \text{ J} / 3 \times 10^8 \text{ m s}^{-1}$$

$$= 4.7 \times 10^{-6} \text{ N s (kg m s}^{-1})$$

2

1

Force exerted on whole sail:

Momentum change/time [OR symbols] (1)

$$=4.7 \times 10^{-6} \times 1.5 \times 10^{6}$$

$$= 7.0 (7.1) N (1)$$

Explanation of why force is doubled:

Photons bounce back (1)

So their change of momentum is doubled (1)

2

3

Calculation of maximum increase in speed:

$$a = F/m = 7/1200 \text{ m s}^{-2} \text{ [allow e.c.f.]}$$
 (1)

$$(= 0.006 \text{ m s}^{-2})$$

$$\Delta v = a \Delta t = 0.006 \text{ m s}^{-2} \times 604 800 \text{ s}$$
 (1)

$$= 3500 \text{ m s}^{-1} (1)$$

[9]

58. Calculation of minimum height *x*:

$$a=\frac{v^2}{r} \ (1)$$

$$\Rightarrow \frac{v^2}{r} \ge g$$
 at top (1)

At top: $\frac{1}{2} m v^2 = mgx$ [OR $mgh \ 1 \text{ mark}$] (2)

$$\Rightarrow$$
 $v^2 = 2gx$ (Note: derived from $v^2 = u^2 + 2as = 0$)

[For $v^2 = 2g(x + 1)$ (1)(speed at bottom)]

$$\Rightarrow 2gx/r \ge g$$
 at top

$$\Rightarrow x \ge r/2$$

$$\Rightarrow x \ge 0.25 \text{ m}$$

$$[\ge or =] (1)$$

[5]

Principle of conservation of linear momentum:		
[Not just equation – symbols must be defined]		
Sum of momenta/total momentum remains constant	(1)	
[Equation can indicate]		
[Not "conserved"]		
If no (resultant) external force acts	(1)	
[Not "closed/isolated system"]		
	2	
Laws of Motion:		
2 nd and 3 rd laws	(1)	
	1	
	1	
Description:	1	
Description: Measure velocities/speeds before and after collision	(1)	
•	-	
Measure velocities/speeds before and after collision	-	
Measure velocities/speeds before and after collision Suitable technique for measuring velocity	-	
Measure velocities/speeds before and after collision Suitable technique for measuring velocity e.g. ticker tape/ticker timer	-	
Measure velocities/speeds before and after collision Suitable technique for measuring velocity e.g. ticker tape/ticker timer light gate(s) motion sensor	(1)	
Measure velocities/speeds before and after collision Suitable technique for measuring velocity e.g. ticker tape/ticker timer light gate(s) motion sensor [Not stop clock or just datalogger]	(1)	
Measure velocities/speeds before and after collision Suitable technique for measuring velocity e.g. ticker tape/ticker timer light gate(s) motion sensor	(1)	

Reason for discrepancy:

Friction/air resistance **(1)**

[Ignore any reference to energy] **(1)**

Explanation:

The Earth (plus car) recoils **(1)**

(1) 2 With same momentum as the car had

4

[10]

60. Momentum of driver:

Correct use of p = mv [OR with numbers] (1)

$$= 1500 \text{ N s OR } 1500 \text{ kg m s}^{-1}$$
 (1)

2

Average resultant force:

Correct choice of
$$F \times t = \Delta p$$
 OR $F = ma$ (1)

$$F \times 0.07 \text{ (s)} = 1500 \text{ (N s)}$$
 $F = 50 \times 429/50 \times 30/0.07 \text{ (1)}$

$$= 21 \text{ kN}$$
 $= 21 \text{ kN } (1)$ 3

[Ignore sign of answer]

Why resultant force is not the same as force exerted on driver by seatbelt:

Air bags /floor/friction/seat/steering wheel (1)

[Named force other than weight/reaction]

[6]

61. Momentum: mass × velocity [accept defined symbols]

1

1

Physical quantity:

(Net) force (1)

2

["Rate of change of momentum" scores one only]

Magnitude:

$$\frac{61\text{Ns}}{40\text{s}} = 1.5 (3) \times 10^4 \,\text{N}$$

Gradient measurements (1)

Correct calculation (1)

2

[Accept 1.4 - 1.7 to 2 s.f.]

Explanation of shape:

Force decreases as speed increases (1)

[Allow "rate of change of momentum"]

Any one of:

- Air resistance increases
- Transmission friction increases
- Engine force reduces

[7]

62. Demonstration of how statement leads to equation:

Momentum = $mass \times velocity$ (1)

Therefore force ∞ mass \times rate of change of velocity (1)

Therefore force ∞ mass \times acceleration (1)

Definition of newton or choice of units makes the proportionality constant equal 1 (1)

4

[Standard symbols, undefined, OK; "=" throughout only loses mark 4. No marks for just manipulating units. If no $\Delta \ \upsilon$ (e.g. $m\upsilon/t$),can only get marks 1 and 4]

Effect on time:

Time increases (1)

1

Explanation:

Acceleration smaller/momentum decreases more slowly/ $F = \frac{\Delta p}{\Delta t}$ (1)

[Need not say $\Delta p = \text{constant}$]

So force is smaller (1)

2

[Independent mark, but must be consistent with previous argument] [If *no* previous argument, this becomes fully independent mark]

7]

63. Explanation:

Changing direction/with no force goes straight on (along tangent) (1)

Acceleration/velocity change/momentum change (1)

2

Identification of bodies:

A: Earth [*Not* Earth's gravitational field] (1)

B: scales [*Not* Earth/ground] (1)

2

Calculation of angular speed:

Angular speed = correct angle \div correct time [any correct units] (1)

=
$$4.4 \times 10^{-3}$$
 rad min⁻¹ / 0.26 rad h⁻¹/ 2π rad day⁻¹ etc (1)

2

Calculation of resultant force:

Force =
$$mr\omega^2$$
 (1)
= $55 \text{ kg} \times 6400 \times 10^3 \text{ m} \times (7.3 \times 10^{-5} \text{ rad s}^{-1})^2$ (1)

$$= 55 \text{ kg} \times 6400 \times 10^{6} \text{ m} \times (7.3 \times 10^{-6} \text{ rad s}^{-6})^{-6} \text{ (1)}$$

$$= 1.9 \text{ N (1)}$$

[No e.c.f here unless ω in rad s⁻¹]

Calculation of value of force B:

Force B =
$$539N - 1.9N (1)$$

= $537 N (1)$

[e.c.f. except where R.F = 0]

Force:

Scales read 537 N (same as B) [allow e.c.f.]

Newton's 3rd law/force student exerts on scales (1)

[12]

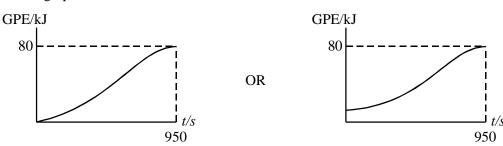
1

64. Calculation of how long wheel takes to complete one revolution:

Time =
$$2\pi \times 60 \text{ m/0.20 m s}^{-1}$$
 (1)
= 1900 s/1884 s/31.4 min (1)

Change in passenger's velocity:

Direction changes OR up (N) \rightarrow down (S) OR + \rightarrow – (1)


 0.40 m s^{-1} [0.40 m s⁻¹ without direction = 2/2]

Calculation of mass:

(G)pe =
$$mgh$$

 $m = 80 \times 10^3$ J/9.81 m s⁻² × 120 m) (1)
[This mark is for rearranging the formula; accept 10 instead (1) of 9.81 and 60 instead of 120 but do not e.c.f. to next mark]
 $m = 68$ kg (1)

3

Sketch graph:

Labelled axes and line showing PE increasing with time Sinusoidal shape (1) (950 s, 80 kJ) (1) [Accept half the time they calculated at start of question (1) instead of 950 s as e.c.f.] 3 [PE v h 0/3] Whether it is necessary for motor to supply the gpe: No, because passenger on other side is losing gpe (1) If wheel equally loaded OR balanced with people (1) Yes, because no other passengers (1) so unequally loaded (1) 2 [12] **65.** Definition of linear momentum: Mass \times velocity [Words or defined symbols; NOT ft] (1) 1 Newton's second law: Line 3 only (1) 1 Newton's third law: Line 2 OR 1& 2 (1) 1 Assumption: No (net) external forces/no friction/drag (1) In line 3 (he assumes the force exerted by the other trolley is the resultant force) [Only if 1st mark earned] (1) 2 Description of how it could be checked experimentally that momentum is conserved in a collision between two vehicles: Suitable collision described and specific equipment to measure velocities [e.g. light gates] (1) Measure velocities before and after collision (1) How velocities calculated [e.g. how light gates used] (1) Measure masses / use known masses/equal masses (1) Calculate initial and final moment a and compare OR for equal trolleys in inelastic collision, then $v_1 = \frac{1}{2} v_2$ (1) Max 4 [9] **66.** Demonstration that water must be thrown backwards at about 13 m s^{-1} :

Force =
$$\frac{\Delta(momentum \ of \ water)}{\Delta t}$$
 (1)

$$8 \times 10^5 \text{ N} = 6 \times 10^4 \times \Delta V(1)$$

$$\Delta V = \frac{8 \times 10^5}{6 \times 10^4} = 13 \text{ m s}^{-1} \text{ (1)}$$

Calculation of power expended:

$$P = F \times \upsilon = 8.0 \times 10^5 \text{ N} \times 20 \text{ m s}^{-1}$$
 (1)
1.6 × 10⁷ W OR 15 MW (1)

Calculation of rate at which water gains kinetic energy:

$$\frac{1}{2} \times m/t \times \upsilon^2 = \frac{1}{2} 6 \times 10^4 \text{ kg/s} \times (13 \text{ M s}^{-1})^2 \text{ (1)}$$

= 5.07 × 10⁶ W OR 5.1 MW (1)
[Allow 5.3 MW if 13.33 m s⁻¹ used]

Overall efficiency:

Power in = 1.6
$$\frac{l}{s} \times 3.4 \times 10^7 \frac{J}{l} = 5.44 \times 10^7 \text{ W (1)}$$

[Intermediate value not explicitly needed]

Power out =
$$16.0 \times 10^6 + 5.4 \times 10^6 = 21.4 \times 10^6$$
 (1)

Efficiency =
$$\frac{21.4}{54.5}$$
 = 0.39 (39%) (1)

[10]

67. A satellite orbits the Earth once every 120 minutes. Calculate the satellite's angular speed.

Correct substitution into angle/time (1)

Answer with correct unit (1)

r.p.m. etc. not allowed

Angular speed = e.g. 0.052 rad min⁻¹ 180°h⁻¹

(2 marks)

Draw a free-body force diagram for the satellite.

(1 mark)

(If the Earth is shown, then the direction must be correct)

The satellite is in a state of free fall. What is meant by the term *free fall?* How can the height of the satellite stay constant if the satellite is in free fall?

Free fall – when gravitational force is the only force acting on an object (1)

Height - (1) for each clear and relevant physics statement (1) + (1)

(3 marks) [Total 6 marks]